In RSK, we have a pair of SSYT (P, Q) we con turn them into GT patterns \widetilde{P} and \widetilde{Q}

glue them together into a square

we get reverse plane partitions (RPP)
So we get correspondence

RPP.s of shape oxen.

$$
\begin{array}{cc}
d_{1}=\alpha_{1} & d_{2 n-1}=\beta_{1} \\
d_{2}=\alpha_{1}+\alpha_{2} & d_{2 n-2}=\beta_{1}+\beta_{2} \\
\vdots & \vdots \\
d_{n}=\alpha_{1}+\cdots+\alpha_{n} & d_{n}=\beta_{1}+\cdots+\beta_{n}
\end{array}
$$

This shows that RSK is consistent with transposition

Similar bijection works for any tong diagram.

A generalization of RSK
Let K be a Young diagram.

Tm There exists a bijection φ_{x} $\left\{\begin{array}{c}\text { non -neg matrices } \\ \text { of shape } k\end{array}\right\} \xrightarrow{\varphi_{k}}\left\{\begin{array}{l}\text { RPP -s of } \\ \text { shape } k\end{array}\right\}$ such that

- Mk is piecewise linear map.
- codsums $\alpha_{13} \ldots, \alpha_{n}$ and rowsums $\beta_{11}, \ldots, \beta_{m}$ of A ave related to diagonal sums d_{1}, \ldots, d_{m+n-1} of $B=\varphi_{k}(A)$

- symmetry: if $\varphi_{k}: A \rightarrow B$
then $\varphi_{k^{\prime}}: B \rightarrow A$
- If $k=n \times n$ agrees with RSK
when $\alpha_{1}=\cdots=\alpha_{n}=\beta_{1}=\cdots=\beta_{n}$ the bijection specialize into a bijection between nook placements and oscillating tableus

pus

